
Getting Started With R

Table of contents

Installing R and RStudio 3

Some R basics 4

Exercise 1.1 6

Exercise 1.2 7

Exercise 1.3 8

Quarto 10

Loading/Importing Data 11

Exercise 1.4 13

Exercise 1.5 14

Exercise 1.6 15

Graphing with ggplot2 16

Exercise 1.6 18

Exercise 1.7 19

Exercise 1.8 20

Exercise 1.9 22
tidyr . 31

2

Installing R and RStudio

If you have not installed R and RStudio, refer to the study guide for some instructions.

To start this workshop download the source from the class website. You can now save this to
your computer and make notes in this document.

3

Some R basics

Working directory

In RStudio, set the working directory under the Session menu. It is a good idea to start your
analysis as a new project in the File menu so that the entire work and data files can be saved
and re-opened easily later on.

getwd() # check your working directory

[1] "/Users/mmarraff/Documents/Classes/161.250/Data_Analysis_Course/workshops"

setwd() # if you know the directory you want R to look in

R/RStudio as a calculator

In RStudio, use the File » New File » R Script menu to type or copy and paste the commands
and execute them

Type 1+1 to see 2 on the console (or ->Run the code in RStudio).

1+1

[1] 2

Type a=1;b=2;a/b to see 0.5.

a=1;b=2;a/b

[1] 0.5

Note that semicolon separates various commands. It is optional to use them as long as you
type the commands one by one as follows:

4

a=1
b=2
a/b

[1] 0.5

5

Exercise 1.1

There are many built-in functions. Try the following.

27^3 sqrt(10) round(sqrt(10),2) abs(-4) log(10) exp(10) rnorm(100) mean(rnorm(100))
sd(rnorm(100))

your code goes here
make yourself notes about what these functions do

You may wonder what was the base used for log(10). A help on this can be obtained by
placing a question mark (?) before log as ?log or by help(log)

There are a few exceptions. The command ?if wont work but ?"if" will. In other words,
?"log" or help("log") are safer ways of getting help on “built-in” functions.

In RStudio, use the R Editor (menu File > New Script) to type the commands and submit
them (shortcut: CNTRL+R).‘

6

Exercise 1.2

Why does this code not work?

my_variable <- 10
my_varıable

7

Exercise 1.3

Make a variable with a sequence of numbers between 1 and 10.

your code goes here

Default examples

The command example() will produce the available HELP examples, and will work for most
functions. For example, try example(boxplot). You will see many boxplot examples such as
the following:

boxplot(count ~ spray, data = InsectSprays, col = "lightgray")

A B C D E F

0
5

10
20

spray

co
un

t

There are also demos available, explore using the command demo(). The basic R system
produces somewhat old style graphs.

So we will be largely using the newer plotting system ggplot which is part of the tidyverse
suite of packages; see https://www.tidyverse.org/.

Let’s load that package now:

8

https://www.tidyverse.org/

library(tidyverse)

A huge number of other dedicated packages are available to improve the power of R. Many R
packages are hosted at a repository called CRAN (Comprehensive R Archive Network). The
package install option within RStudio can download and install these optional packages under
the menu Packages >> Install. You can also do this using the command install.packages.
For example

install.packages(c("tidyverse", "car"), dependencies = TRUE)

This command installs two packages tidyverse and car in one go.

Contributed R packages are grouped in various headings at https://cran.r-project.org/web/
views/. They can be installed in bulk using the ctv package command install.views().

You might have to install quite a few packages as you work through this course.

9

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/

Quarto

This course will be using Quarto *.qmd files rather than raw *.R files. Heard of Rmarkdown?
Well, Quarto is the successor to Rmarkdown. So, if you’re just starting to use R, then you
should begin with Quarto rather than Rmarkdown, because most/all new development will be
going into Quarto.

Here’s some information to get you started: https://quarto.org/docs/get-started/hello/rstudio.
html.

And some other useful tips: https://r4ds.hadley.nz/quarto.

The studyguide illustrates a step-by-step guide to setting up a Quarto project.

10

https://quarto.org/
https://quarto.org/docs/get-started/hello/rstudio.html
https://quarto.org/docs/get-started/hello/rstudio.html
https://r4ds.hadley.nz/quarto

Loading/Importing Data

If the data file is stored locally, you should put the data into the same directory as your Quarto
or R markdown script. That way, you can (usually) load it easily without having to type the full
pathway (e.g., mydata.csv rather than C:/Users/anhsmith/Work/Project1/data/mydata.csv).
Better yet, Projects make this much easier.

You can also load data from the web using a URL. For example,

read_csv("https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv")

Rows: 33 Columns: 10
-- Column specification --
Delimiter: ","
dbl (10): id, loc, time, w.e, cl, wind, temp, river, people, vehicle

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 33 x 10
id loc time w.e cl wind temp river people vehicle

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 2 1 1 2 2 1 37 15
2 2 1 1 1 1 2 1 2 23 6
3 3 1 2 1 1 2 2 3 87 31
4 4 2 2 1 1 2 1 1 86 27
5 5 2 1 1 1 2 2 2 19 2
6 6 2 2 1 2 1 3 3 136 23
7 7 1 2 2 2 2 2 3 14 8
8 8 1 2 1 2 2 2 3 67 26
9 9 1 1 2 1 3 1 2 4 3
10 10 2 2 1 2 2 2 3 127 45
i 23 more rows

We’d usually want to store the data as an object though, like so:

11

https://r4ds.hadley.nz/workflow-scripts#projects

rangitikei <- read_csv("https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv")

Rows: 33 Columns: 10
-- Column specification --
Delimiter: ","
dbl (10): id, loc, time, w.e, cl, wind, temp, river, people, vehicle

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Now the data are available in R as an object.

glimpse(rangitikei)

Rows: 33
Columns: 10
$ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,~
$ loc <dbl> 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1,~
$ time <dbl> 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2,~
$ w.e <dbl> 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2,~
$ cl <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2,~
$ wind <dbl> 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2,~
$ temp <dbl> 2, 1, 2, 1, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 2,~
$ river <dbl> 1, 2, 3, 1, 2, 3, 3, 3, 2, 3, 1, 3, 1, 3, 1, 1, 2, 1, 2, 2, 3,~
$ people <dbl> 37, 23, 87, 86, 19, 136, 14, 67, 4, 127, 43, 190, 50, 47, 32, ~
$ vehicle <dbl> 15, 6, 31, 27, 2, 23, 8, 26, 3, 45, 7, 53, 22, 18, 10, 3, 11, ~

12

Exercise 1.4

Try importing the Telomeres data file (in Excel format) available at

https://rs.figshare.com/ndownloader/files/22850096

your code goes here

Note that Excel files usually contain blanks for missing or unreported data or allocate many
rows for variable description, which can cause issues while importing them.

Consider the study guide dataset rangitikei.txt (Recreational Use of the Rangitikei river)
again. The first 10 rows of this dataset are shown below:

id loc time w.e cl wind temp river people vehicle
1 1 1 2 1 1 2 2 1 37 15
2 2 1 1 1 1 2 1 2 23 6
3 3 1 2 1 1 2 2 3 87 31
4 4 2 2 1 1 2 1 1 86 27
5 5 2 1 1 1 2 2 2 19 2
6 6 2 2 1 2 1 3 3 136 23
7 7 1 2 2 2 2 2 3 14 8
8 8 1 2 1 2 2 2 3 67 26
9 9 1 1 2 1 3 1 2 4 3
10 10 2 2 1 2 2 2 3 127 45

The description of the variables is given below:

loc - two locations were surveyed, coded 1, 2
time - time of day, 1 for morning, 2 for afternoon
w.e - coded 1 for weekend, 2 for weekday
cl- cloud cover, 1 for >50%, 2 for <50%
wind- coded 1 through 4 for increasing wind speed
temp - temperature, 1, 2 or 3 increasing temp
river- murkiness of river in 3 increasing categories
people - number of people at that location and time
vehicle- number of vehicles at that location at that time

13

https://rs.figshare.com/ndownloader/files/22850096

Exercise 1.5

How many rows are in my.data? How many columns? How can you find that in R?

14

Exercise 1.6

Find the mean of vehicle and the median of people using built in R functions.

15

Graphing with ggplot2

If have not installed ggplot2 or tidyverse, install it with the following commands.

install.packages("ggplot2")
install.packages("tidyverse")

We can now load the ggplot2 library with the commands:

library(ggplot2)

In order to work with ggplot2, we must have a data frame or a tibble containing our data.
We need to specify the aesthetics or how the columns of our data frame can be translated
into positions, colours, sizes, and shapes of graphical elements.

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point()

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

16

The aes part defines the “aesthetics”, which is how columns of the dataframe map to graphical
attributes such as x and y position, colour, size, etc. An aesthetic can be either numeric
or categorical and an appropriate scale will be used. After this, we add layers of graphics.
geom_point layer is employed to map x and y and we need not specify all the options for
geom_point.

17

Exercise 1.6

Why does the following give an error and how would you fix it?

ggplot(data = my.data) +
geom_point()

We can add a title using labs() or ggtitle() functions. Try-

ggplot(my.data) +
aes(x = vehicle, y = people, color = river) +
geom_point() +
ggtitle("No. of people vs No. of vehicles")

or

ggplot(my.data)+
aes(x = vehicle, y = people) +
geom_point() +
labs(title = "No. of people vs No. of vehicles")

Note that labs() allows captions and subtitles.

18

Exercise 1.7

Remake the above graph, adjusting the x axis to say Vehicles using the labs() function.

geom_smooth is additionally used to show trends.

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point() +
geom_smooth()

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

0

100

200

300

400

500

0 25 50 75 100 125
vehicle

pe
op

le

19

Exercise 1.8

Run this code in your head and predict what the output will look like. Then, run the code in
R and check your predictions.

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point()+
geom_smooth(se = FALSE)

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

Similar to geom_smooth, a variety of geoms are available.

ggplot(my.data) +
aes(x = factor(wind), y = people) +

20

geom_boxplot()

0

100

200

300

400

1 2 3
factor(wind)

pe
op

le

Each geom accepts a particular set of mappings;for example geom_text() accepts a labels
mapping. Try-

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point() +
geom_text(aes(label = w.e),

size = 5)

21

Exercise 1.9

Will these two graphs look different? Why/why not?

ggplot(
data = my.data,
mapping = aes(x = vehicle, y = people)

) +
geom_point() +
geom_smooth()

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

0

100

200

300

400

500

0 25 50 75 100 125
vehicle

pe
op

le

ggplot() +
geom_point(

data = my.data,

22

mapping = aes(x = vehicle, y = people)
) +
geom_smooth(

data = my.data,
mapping = aes(x = vehicle, y = people)

)

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

0

100

200

300

400

500

0 25 50 75 100 125
vehicle

pe
op

le

The faceting option allows a collection of small plots with the same scales. Try-

ggplot(my.data) +
aes(x=vehicle, y=people) +
geom_point() +
facet_wrap(~ river)

23

1 2 3

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125

0

100

200

300

400

vehicle

pe
op

le

Faceting is the ggplot2 option to create separate graphs for subsets of data. ggplot2 offers
two functions for creating small multiples:

1. facet_wrap(): define subsets as the levels of a single grouping variable
2. facet_grid(): define subsets as the crossing of two grouping variables

The following arguments are common to most scales in ggplot2:

• name: the first argument gives the axis or legend title
• limits: the minimum and maximum of the scale
• breaks: the points along the scale where labels should appear
• labels: the labels that appear at each break

Specific scale functions may have additional arguments. Some of the available Scales are:

Scale Examples
scale_color_ scale_color_discrete
scale_fill_ scale_fill_continuous
scale_size_ scale_size_manual

scale_size_discrete

scale_shape_ scale_shape_discrete
scale_shape_manual

scale_linetype_ scale_linetype_discrete

24

Scale Examples

scale_x_ scale_x_continuous
scale_x_log
scale_x_date

scale_y_ scale_y_reverse
scale_y_discrete
scale_y_datetime

In RStudio, we can type scale_ followed by TAB to get the whole list of available scales.

Try-

ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point() +
scale_x_continuous(name = "No. of Vehicles") +
scale_y_continuous(name = "No. of people") +
scale_color_discrete(name = "Temperature")

0

100

200

300

400

0 25 50 75 100 125
No. of Vehicles

N
o.

 o
f p

eo
pl

e Temperature

1

2

3

The other coding option is shown below:

25

ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point() +
xlab("No. of Vehicles") +
ylab("No. of people") +
labs(colour="Temperature")

Note that a desired graph can be obtained in more than one way.

The ggplot2 theme system handles plot elements (not data based) such as

• Axis labels
• Plot background
• Facet label background
• Legend appearance

Built-in themes include:

• theme_gray() (default)
• theme_bw()
• theme_minimal()
• theme_classic()

p1 <- ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point()

Note that the graph is assigned an object name p1 and nothing will be printed unless we then
print the object p1.

p1 <- ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point()

p1

26

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

Try-

p1 + theme_light()

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

27

p1 + theme_bw()

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

Specific theme elements can be overridden using theme(). For example:

p1 + theme_minimal() +
theme(text = element_text(color = "red"))

28

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

All theme options can be seen with ?theme.

To specify a theme for a whole document, use

theme_set(theme_minimal())

Minimal graphing can be done using the qplot option that will produce a few standard for-
matted graphs quickly.

qplot(people, vehicle, data = my.data, colour = river)

Warning: `qplot()` was deprecated in ggplot2 3.4.0.

29

0

25

50

75

100

125

0 100 200 300 400
people

ve
hi

cl
e

river

1.0

1.5

2.0

2.5

3.0

Try-

qplot(people, data = my.data)

qplot(people, fill=factor(river), data=my.data)

qplot(people, data = my.data, geom = "dotplot")

qplot(factor(river), people, data = my.data, geom = "boxplot")

A cheat sheet for ggplot2 is available at https://www.rstudio.com/resources/cheatsheets/
(optional to download). There are many other packages which incorporate ggplot2 based
graphs or dependent on it.

The library patchwork allows complex composition arbitrary plots, which are not produced
using the faceting option. Try

library(patchwork)

p1 <- qplot(people, data = my.data, geom = "dotplot")
p2 <- qplot(people, data = my.data, geom = "boxplot")
p3 <- ggplot(my.data, aes(x = vehicle, y = people)) + geom_point()

(p1 + p2) / p3 +
plot_annotation("My title", caption = "My caption")

30

https://www.rstudio.com/resources/cheatsheets/

Bin width defaults to 1/30 of the range of the data. Pick better value with
`binwidth`.

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
people

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400
people

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

My caption

My title

tidyr

By the phrase tidy data, it is meant the preferred way of arranging data that is easy to
analyse. The principles of tidy data are:

• Each variable forms a column.
• Each observation forms a row.
• Each type of observational unit forms a table.

Simple Manipulations

There is always more than one-way of manipulating the data, producing summaries and tables
from raw data.

One of the simplest manipulations on a batch of data we may do is to change the data type
say numeric to character. For example, the television viewing time data in the text file tv.csv
is read into a dataframe by the command line

my.data <- read.csv(
"https://www.massey.ac.nz/~anhsmith/data/tv.csv",

31

header =TRUE
)

We can improve the read.csv command to recognise the data type while reading the table as
follows, using the read_csv command from the readr package:

my.data <- read_csv(
"https://www.massey.ac.nz/~anhsmith/data/tv.csv",
col_types = "nfcc"
)

The argument col_types = "nfcc" stands for {numeric, factor, character, character},
to match the order of the columns.

my.data

A tibble: 46 x 4
TELETIME SEX SCHOOL STANDARD

<dbl> <fct> <chr> <chr>
1 1482 1 1 4
2 2018 1 1 4
3 1849 1 1 4
4 857 1 1 4
5 2027 2 1 4
6 2368 2 1 4
7 1783 2 1 4
8 1769 2 1 4
9 2534 1 1 3
10 2366 1 1 3
i 36 more rows

We often do a summary of a numerical variable for a given categorical variable. For example,
we like to see obtain the summary statistics of TV viewing times for various schools. The
commands

attach(my.data)
by(TELETIME, SCHOOL, summary)

We employed the by() command above and instead, we may also use tapply() aggregate()
functions:

tapply(TELETIME, SCHOOL, summary)

32

aggregate(TELETIME, list(SCHOOL), summary)

A tabulated summary of categorical data is obtained using the table() command.

my.data <- read.csv(
"https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv",
header=TRUE
)

wind <- my.data |> pull(wind)
river <- my.data |> pull(river)

table(wind, river)

It is sometimes convenient to work with matrices for some R functions such as apply(). For
example, the number of admissions data in hospital.txt data can be formed as a matrix.
Note that this is possible because we have the same number of observations for each hospital
location.

data <- read.table(
"https://www.massey.ac.nz/~anhsmith/data/hospital.txt",
header=TRUE,
sep=",")

M <- data |>
select(NORTH1, NORTH2, NORTH3,

SOUTH1, SOUTH2, SOUTH3) |>
sqrt()

means <- apply(M, 1, mean)
sds <- apply(M, 1, sd)

plot(means, sds)

33

	Installing R and RStudio
	Some R basics
	Exercise 1.1
	Exercise 1.2
	Exercise 1.3
	Quarto
	Loading/Importing Data
	Exercise 1.4
	Exercise 1.5
	Exercise 1.6
	Graphing with ggplot2
	Exercise 1.6
	Exercise 1.7
	Exercise 1.8
	Exercise 1.9
	tidyr

