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“….the Chi-square statistical test is one of twenty important scientific breakthroughs
of the 20th century…”

— Ian Hacking [5]
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1 Introduction

In this chapter we consider tests of fit and tests of association. Tests of fit and association are
used to determine whether the data complies with some hypothesis. In the first case, Goodness
of Fit tests are used to determine whether the frequency distribution of some variable observed
in sample data (for example the frequencies associated with the two categories of gender)
complies with some hypothesised frequency breakdown. This test would involve comparing
the number of males and females in the sample with the numbers of males and females expected
under the hypothesis. Sometimes it is the Goodness of Fit of a particular distribution which
is in question. For example, can we assume that the residuals follow a Normal distribution?
We have already seen in Chapters 3 and 4 how Normal probability plotting can be used to
asses for normality. Chi-squared Goodness of Fit Tests can also be used to test whether the
data follows a specific distribution.

Tests of association, on the other hand, are tests for a relationship between two categorical
variables when the data is arranged as a cross-tabulation (contingency table). Observed fre-
quencies are compared with the frequencies which would be expected if the rows and columns
of the tables were independent. If they are not independent, then we can use a numerical and
graphical technique called Correspondence Analysis to help us explore the ‘correspondence’
(i.e. association) of the various row and column categories. Correspondence Analysis will be
introduced only at a very basic level.
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2 Goodness of Fit Tests for Frequencies

In this section, we consider a row of numbers and consider the question, How do observed
frequency counts compare with known, or assumed, expected counts? Consider the following
hypothetical example. Of the people who emigrated from New Zealand in a particular year,
the percentages in three age categories were as shown in Table 2.1.

library(tidyverse)
theme_set(theme_minimal())

emigration <- tibble(
Age = c( "Up to 30 years", "31-40 years", "41 years and older"),
Percentages = c(65, 25, 10)
)

emigration

Table 2.1: Emigration Data

Age Percentages
Up to 30 years 65
31-40 years 25
41 years and older 10

Assume that in a random sample of 200 emigrating from Wellington, the numbers in the three
age categories were 100, 55 and 45 respectively (data fictitious). Are these numbers compatible
with the yearly percentages? For the first category we would have expected 65% of 200 = 130;
for category B, expected number is 25% of 200 = 50; for C, expected number is 10% of 200 =
20. We can then form a table of observed and expected frequencies as shown in Table 2.2.

emigration <- emigration |>
mutate(

`Expected counts` = c(130, 50, 20),
`Observed counts` = c(100, 55, 45)

)
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emigration

Table 2.2: Emigration data with observed and expected counts

Age Percentages Expected counts Observed counts
Up to 30 years 65 130 100
31-40 years 25 50 55
41 years and older 10 20 45

Clearly, the composition in the random sample differs from the overall New Zealand per-
centages in that particular year. The question is whether these differences can be attributed
simply to chance variation, or whether they indicate a definite regional difference between the
emigration pattern from Wellington and that of New Zealand as a whole?

To test whether the observed values differ significantly from the expected, the Chi-squared
statistic is used. Notice that the Greek letter 𝜒, chi, is pronounced “kai” as in the greeting
“hi”.

𝜒2 =
𝑐

∑
1

(Observed-Expected)2

Expected =
𝑐

∑
1

(𝑂 − 𝐸)2

𝐸

There are three points to be noted here:

a. The summation is over every cell (that is every count).

b. The Chi-squared statistic has a continuous distribution. Like the t distribution, its shape
depends on the degrees of freedom; in general, its curve is skewed to the right. With 𝑐
categories, the degrees of freedom is equal to (𝑐 − 1).

c. We are employing the Chi-squared statistic with data which consists of integers. That
is, the data are discrete rather than continuous. In consequence, the above formula for
Chi-squared statistic is only approximate but the approximation is very good if each
expected value is greater than 5 and it is often good even if some expected values are as
small as 1.

For the emigration example,

𝜒2 = (100 − 130)2/130 + (55 − 50)2/50 + (45 − 20)2/20
= 6.92 + 0.5 + 31.25
= 38.67

with 2 degrees of freedom.
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From the tables of 𝜒2 distribution, 38.67 is much larger than the tabulated value of 13.82 so
that the area (probability) greater than this value is only 0.001. In other words, the probability
of such a high value of Chi-squared by chance is very small, indeed less than 0.001 or 0.1%.
This leads us to reject, at the 0.1% level, the assumption that the age composition of emigrants
(from Wellington) agrees with the overall New Zealand yearly figures. This suggests a difference
in the age distribution of emigrants. Notice that the contributions to the Chi-squared statistic
are reasonably small for categories A and B, but category C contributes a large value of 31.25.
It would appear that the emigrants from Wellington are older.

There is an interesting historical situation in which Chi-squared statistics were used to demon-
strate the experimental results had been fudged. Gregor Mendel (1822-1884) has some claim
to being called the father of modern genetics. Freedman, Pisani, and Purves [4] in their book
‘Statistics’ gave the following explanation.

“Mendel’s experiments were all carried out on garden peas. Pea seeds are either
yellow or green, and a plant can bear seeds of both colours. Mendel bred a pure
yellow strain, that is, a strain in which every plant in every generation had only
yellow seeds; and separately he bred a pure green strain. He then crossed plants
of the pure yellow strain with plants of the pure green strain. For instance, he
used pollen from the yellows to fertilise ovules on plants of the green strain. (The
alternative method using pollen from the greens to fertilise plants of the yellow
strain, gave exactly the same results). The seeds resulting from a yellow-green
cross, and the plants in to which they grow, are called first-generation hybrids.
First-generation hybrid seeds are all yellow, indistinguishable from seeds of the
pure yellow strain. So the green seems to have disappeared completely.”These
first-generation hybrid seeds grew into first-generation hybrid plants which Mendel
crossed with themselves, producing second-generation hybrid seeds. Some of these
second-generation seeds were yellow, but some were green. So the green disappeared
for one generation, but reappeared in the second. Even more surprising, the green
reappeared in a definite simple proportion: of the second-generation hybrid seeds,
about 75% were yellow and 25% were green. “What is behind this regularity? To
explain it, Mendel postulated the existence of the entities now called genes. The
genes of the yellow strain were dominant while the genes of the green strain were
recessive. This caused the yellow colouring of the first-generation hybrids.”

Of course, the situation becomes more complicated if more than one attribute is considered.
In one of Mendel’s trials he also considered whether the peas were smooth or wrinkled in
appearance. The ratio for four types of peas was expected to be 9:3:3:1. The observed and
expected numbers in the four categories were as shown in Table 2.3.

Mendel <- tibble(
`Type of pea` = c("Smooth yellow",

"Wrinkled yellow",
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"Smooth green",
"Wrinkled green"),

`Expected counts` = c(313, 104, 104, 35),
`Observed counts` = c(315, 101, 108, 32)

)

Mendel

Table 2.3: Pea observed and expected counts

Type of pea Expected counts Observed counts
Smooth yellow 313 315
Wrinkled yellow 104 101
Smooth green 104 108
Wrinkled green 35 32

The observed results are very close to those expected and therefore a very small Chi-squared
value is obtained. Sir R A Fisher (1890–1962) has some claim to being the father of inferential
statistics. He examined the results of a number of Mendel’s experiments and discovered that,
without exception, the Chi-squared values were much smaller than expected. While one can be
lucky on a few occasions obtaining results close to what a theory suggests, the probability that
the Chi-squared values would be small in every experiment is so low as to be unbelievable.
Did the great Mendel cheat? Fisher [2] gave him the benefit of the doubt but noted that
Mendel’s assistant may well have been aware of the anticipated results and consciously, or
unconsciously, had classified the peas in the appropriate cell. After all, it was not always easy
to classify some of the pea seeds. The moral is that some people are just too helpful.

2.1 Goodness of Fit for Distributions

When testing for the goodness of fit for a distribution, observations in various non-overlapping
ranges are classified into categories and a frequency count is obtained for each category or
range. These (observed) frequency counts are compared to the counts which would be obtained
if the hypothesised distribution fitted the data exactly. We call these counts the expected
counts. In general one assumes that the parameters of the hypothesised distribution equal the
estimates obtained from the data. Thus we are effectively just testing whether the shape of
the hypothesised distribution is correct.

For example if a set of data has a sample mean of 10 and sample standard deviation of 2 and
we wish to test whether a Normal distribution is appropriate for these data, we hypothesise
a Normal distribution with a mean of 10 and a standard deviation of 2. The following Chi-
squared statistic can be used to test whether the hypothesised distribution describes the data
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reasonably well. The idea is to split the number line into, say, 𝑐 non-overlapping intervals
spanning the range of the data. The observed and expected frequency of data in each interval
is then compared, using

𝜒2 =
𝑐

∑
1

(Observed-Expected)2

Expected =
𝑐

∑
1

(𝑂 − 𝐸)2

𝐸 ,

where again we sum over all 𝑐 categories. For example, for 𝑛 = 100 data we would expect
15.87% to be ≤ 8, 34.13% to be greater than 8 and ≤ 10 , 34.13% to be greater than 10 and
≤ 12, and 15.87% to be > 12. We would compare our observed counts with these expected
ones. Note that expected counts need not be integers, and should not be rounded in the
calculation of 𝜒2, especially if they are small as that can introduce substantial round-off error
into 𝜒2.

The degrees of freedom for this test equals the number of data categories minus one more than
the number of parameters estimated 𝑐 − 1 − 2 = 𝑐 − 3 in this case). These tests were covered
in your first-year paper. You should revise your notes on them. Note that we have seen in
Chapter 4 that it is possible to test for normality using an tests such as Shapiro-Wilk test.
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3 Contingency Tables

Contingency tables are frequency counts arranged in a two way table. We can test for inde-
pendence between the rows and columns of such a table using a Chi-squared statistic. There
are two main points which need to be noted:

(a) Expected values can be obtained by assuming that the row variable is independent of
the column variable. In practice, this means that the expected count for cell (𝑖, 𝑗) is
given by 𝐸𝑖𝑗 where

𝐸𝑖𝑗 = (𝑇𝑖 × 𝑇𝑗)/𝑛

in which 𝑇𝑖 = total for row 𝑖, 𝑇𝑗 = total for column 𝑗 and 𝑛 = overall total count

(b) The degrees of freedom are given by (𝑟 − 1) × (𝑐 − 1) where 𝑟 is the number of rows
and 𝑐 is the number of columns.

These points will be illustrated in the example below on Porcine Stress Syndrome. The Chi-
squared statistic is constructed in the same way as before, i.e.

𝜒2 =
𝑟

∑
𝑖=1

𝑐
∑
𝑗=1

(𝑂𝑖𝑗−𝐸𝑖𝑗)
2

𝐸𝑖𝑗
.

A useful way of thinking about the 𝜒2 is the following. If we think of the difference between
the observed and expected values as a residual, then we can write:

𝜒2 = ∑ (O-E)2

E = ∑ (residual)2

fit .

In more theoretical courses, you may learn that data expressed as counts often follows a Poisson
distribution in which the mean equals the variance. If you substitute variance for fit in the
formula, you get

𝜒2 = ∑ (residual)2

variance = ∑ (residual
std dev )

2
.
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which looks like a sum of squared standardised residuals. As noted in chapter 6 any standard-
ised residuals which are greater than 2 (approximately) in absolute value can be regarded as
significant. Squaring this we find that any cell which makes a contribution of more than 4 to
the Chi-squared statistic is a significant source of the dependence between rows and columns.
So this idea helps in the interpretation of contingency tables. Any cells contributing more than
4 to the Chi-squared statistic should be studied carefully in order to gain an understanding
regarding the nature of any dependence between the rows and columns.

3.1 Example: Porcine Stress Syndrome (PSS)

Porcine Stress Syndrome (PSS) can result in the development of pale, soft meat in pigs and,
under conditions of stress, sudden death. It can therefore result in severe economic loss. It
is believed to be controlled by a single gene and its incidence could therefore be reduced by
a selective breeding program. In a survey of its incidence, the following results were obtained
for four major breeds. (The presence of PSS can be detected by a positive reaction to the
breathing of halothane). The observed counts are shown in Table 3.1.

dpss <- tibble(
Breed = c("Large White", "Hampshire", "Landrace(B)", "Landrace(S)"),
`Halothane positive` = c(2, 3, 11, 16),
`Halothane negative` = c(76, 86, 73, 76)

)

library(janitor)

dpss_with_totals <- dpss |>
adorn_totals(

name = c("Row total", "Column total"),
where = c("row", "col")
)

dpss_with_totals

Table 3.1: Porcine Stress Syndrome (PSS) data

Breed Halothane positive Halothane negative Column total
Large White 2 76 78
Hampshire 3 86 89
Landrace(B) 11 73 84
Landrace(S) 16 76 92
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Row total 32 311 343

Expected values are calculated assuming independence between the rows and columns. This
gives the numbers in parentheses in Figure 3.1.

Figure 3.1: Manual computation of ChSq statistic

For example the expected value in the (3, 2) cell, the number of British Landrace pigs which
gave a negative test for halothane, is

𝐸3,2 = 𝑇3 × 𝑇2/𝑛 = 84 × 311/343 = 76.2.
The Chi-squared statistic is calculated as before using the formula 𝜒2 = ∑(𝑂𝑖𝑗 − 𝐸𝑖𝑗)2/𝐸𝑖𝑗.
The Chi-square of 16.43 is associated with (4 − 1) × (2 − 1) = 3 degrees of freedom, and is
therefore significant at the 5% level and at the 0.5% level. (Note that the tabulated value or
critical value equals 7.81 at 5% significance level; and 12.8 at the 0.5% level).

Hence, there is strong statistical evidence that there are differences between breeds in the
incidence of porcine stress syndrome. In other words, the breed is not independent of the
result of the halothane test.

Notice that the large counts in the second column (halothane negative) lead to large expected
values but low contributions to the Chi-squared statistics (0.38, 0.35, 0.13 and 0.66). This is not
surprising as each of these terms is divided by a large expected value. On the other hand, the
small observations of the first column lead to small expected values but larger contributions
to the Chi-squared statistic. Any Chi-squared contribution in excess of four (as explained
previously) should be interpreted. In this example it is clear that Landrace (Swedish) pigs are
more prone to porcine stress syndrome than are the other three breeds.

Another view of the idea of degrees of freedom can be obtained by noting that if the three
expected values at the top of Column 2 are calculated (70.7, 80.7 and 76.2) then the remaining
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expected value can be found by subtraction from the appropriate row or column totals. Thus
if the row and column totals are known, then only three numbers inside the contingency table
are free before the whole table of numbers is then determined.
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4 Points to Watch Out For

The Chi-squared statistic should only be used with frequency counts. Sometimes, researchers
convert the counts in the cells of a table to percentages of the total. For example in Figure 3.1,
the cell counts could be divided by 343 and multiplied by 100 to give percentages. In this case,
the numbers in the cells would be reduced and the Chi-squared statistic likewise would be
reduced from 16.43 to 16.43/343 = 0.048. An incorrect conclusion of independence of rows
and columns would be drawn from this statistic.

If the expected value in a cell is small, the contribution to the Chi-squared statistic may be
spuriously inflated. It was suggested earlier that an expected value less than 5 may lead to
some concern and a very small value of less than 1 should sound warning bells. We suggest
the following procedure:

1. If the Chi-squared statistic is small enough to not be significant, there is no problem.

2. If the Chi-squared statistic is significant in comparison with tabulated values, then con-
sider the contributions of each cell. If cells with large expected value (that is, greater than
5) contribute a large amount to the Chi-squared statistic, again there is no problem. If
cells with expected values less than 5 yield large contributions to the Chi-squared statis-
tic, now you can worry and any declaration of significant values of Chi-squared statistic
should be treated with caution.

4.1 Example: Paturition in Sows

Consider the data on the effects of parturition in sows shown in Table 4.1.

dsow <- tibble(
Condition = c("Starvation", "Overlain", "Anaemia", "Infections", "Birth Defect"),
`Control` = c(8, 8, 0, 3, 6),
`Injected` = c(10, 9, 12, 7, 2)
)

dsow_with_totals <- dsow |>
adorn_totals(

name = c("Row total", "Column total"),
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where = c("row", "col")
)

dsow_with_totals

Table 4.1: Parturition in sows

Condition Control Injected Column total
Starvation 8 10 18
Overlain 8 9 17
Anaemia 0 12 12
Infections 3 7 10
Birth Defect 6 2 8
Row total 25 40 65

In an experiment to consider the effects of parturition in sows, 19 pregnant sows were given
intramuscular injections of the drug prostaglandin while another 19 pregnant sows served as
controls. Of the piglets born to the control sows, 25 died and were autopsied in the first 3
days and, for the treated sows, 40 died and were autopsied in the first 3 days. The chi square
test is shown in Figure 4.1 and then the R output follows.

# Make the variable "Condition" the row names
# so that the data frame contains only the
# two columns and 10 data points
dsow_dataonly <- dsow |>
column_to_rownames("Condition")

dsow_dataonly

Control Injected
Starvation 8 10
Overlain 8 9
Anaemia 0 12
Infections 3 7
Birth Defect 6 2

dsow_dataonly |> chisq.test()

Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
incorrect
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Figure 4.1: Manual computation of ChSq statistic

Pearson's Chi-squared test

data: dsow_dataonly
X-squared = 13.118, df = 4, p-value = 0.01071

Notice that there are four cells whose expected values are less than 5 (4.6, 3.8, 3.1 and 4.9) and
their contributions to the Chi-squared statistic are (4.62, 0.19, 2.78 and 1.74). Without these
contributions, the Chi-squared statistic would not be significant. The conclusion should then
be that there is not enough evidence to conclude that the Chi-squared statistic is significant.
So there is not sufficient evidence to conclude that the cause of death depends on whether the
injection was given.

If the Chi-square test involves many small expected counts, then we may obtain the 𝑝-value
for the chi square statistic by Monte Carlo simulation (i.e. without relying on the Chi-square
approximation). This simulation procedure involves random sampling from the set of all possi-
ble contingency tables having the same row and column totals. The R function chisq.test()
can do this for you.

dsow_dataonly |> chisq.test(simulate.p.value = TRUE)

15



Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)

data: dsow_dataonly
X-squared = 13.118, df = NA, p-value = 0.01049

As mentioned earlier, the Chi-square test is for actual counts and if you scale them you will
get different results. For example, if we multiply Parturition counts by 100, and do the test,
the conclusions will change.

dsow_dataonly_100 <- dsow_dataonly |>
mutate(Control = 100 * Control,

Injected = 100 * Injected)

dsow_dataonly_100

Control Injected
Starvation 800 1000
Overlain 800 900
Anaemia 0 1200
Infections 300 700
Birth Defect 600 200

dsow_dataonly_100 |> chisq.test()

Pearson's Chi-squared test

data: dsow_dataonly_100
X-squared = 1311.8, df = 4, p-value < 2.2e-16

We should also be careful when we combine two or more contingency tables into one. The
association seen in a particular table may disappear after amalgamation. Simpson [6] provided
the theory on why this happens for contingency tables data and hence this paradox is known as
Simpson’s paradox even though this was observed by others before him. Consider the following
R outputs showing the ChiSq test for two separate groups and then the amalgamated group.

For Group 1 counts, the Chi-square test is shown below:
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group1 <- cbind(c(80,30),
c(120,80))

group1

[,1] [,2]
[1,] 80 120
[2,] 30 80

chisq.test(group1)

Pearson's Chi-squared test with Yates' continuity correction

data: group1
X-squared = 4.4809, df = 1, p-value = 0.03428

For group 2 counts, the Chi-square test is shown below:

group2 <- cbind(c(20,25),
c(75,20))

group2

[,1] [,2]
[1,] 20 75
[2,] 25 20

chisq.test(group2)

Pearson's Chi-squared test with Yates' continuity correction

data: group2
X-squared = 15.122, df = 1, p-value = 0.0001008

For the amalgamated contingency table, we obtain-
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all <- cbind(c(100,55),
c(195,100))

all

[,1] [,2]
[1,] 100 195
[2,] 55 100

chisq.test(all)

Pearson's Chi-squared test with Yates' continuity correction

data: all
X-squared = 0.053808, df = 1, p-value = 0.8166

Evidently the association seen in the subgroups is lost after amalgamation.

The opposite can also happen. That is, when populations are separated somewhat parallelly
by a factor like Gender, the overall association may not filter to the same level of association
for the two gender groups.
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5 Square contingency tables

Assume that two observers independently classifying the same 𝑛 items into the same 𝑘 cate-
gories. The resulting contingency table becomes a 𝑘 × 𝑘 square contingency table. In biosta-
tistical studies, such square contingency tables are common. Often such contingency tables
would have very low cell counts for the off-diagonal cells. The main interest with a square con-
tingency table is the assessment or measurement of the agreement between rows and columns.
So there is no need to perform any ChiSq test. Table 5.1 gives the religion of origin cross-
classified by current religion using the six groupings in Britain (data taken from Breen and
Hayes [1]).

drel <- data.frame(
Row = c("R1", "R2", "R3", "R4", "R5", "R6"),
R1 = c(123, 10, 2, 0, 0, 1),
R2 = c(2, 420, 21, 8, 4, 3),
R3 = c(0, 9, 102, 2, 0, 0),
R4 = c(0, 1, 1, 15, 0, 1),
R5 = c(1, 4, 5, 0, 7, 1),
R6 = c(48, 217, 54, 6, 5, 62)

)

drel |>
adorn_totals(

name = c("ROW TOTAL", "COL TOTAL"),
where = c("row", "col")
)

Table 5.1: Crosstabulation of origin religion by current religion

Row R1 R2 R3 R4 R5 R6 COL TOTAL
R1 123 2 0 0 1 48 174
R2 10 420 9 1 4 217 661
R3 2 21 102 1 5 54 185
R4 0 8 2 15 0 6 31
R5 0 4 0 0 7 5 16
R6 1 3 0 1 1 62 68
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ROW TOTAL 136 458 113 18 18 392 1135

The agreement between the origin and current religion can be visualised using the agreement
plot available in the vcd package (Figure 5.1). (Note, some functions require the data to be
in numerical matrix format.)

library(vcd)

Loading required package: grid

drelmatrix <- drel |>
column_to_rownames("Row") |>
as.matrix()

agreementplot(drelmatrix)
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Figure 5.1: Agreement plot for origin vs religion

Evidently there is a strong agreement between rows and columns. One of the popular measures
for measuring agreement is the Cohen’s kappa. This statistic is the diagonal sum of the relative
frequencies, corrected for expected values and standardized by its maximum value. In case of
complete agreement, the kappa coefficient will be unity. For the religion example, the kappa
value is not actually high.

21



Kappa(drelmatrix)

value ASE z Pr(>|z|)
Unweighted 0.4955 0.01825 27.15 2.526e-162
Weighted 0.3358 0.02030 16.55 1.733e-61

This topic is not covered in depth. It is sufficient if you recognise the special form of two-way
contingency table such as this one.
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6 Correspondence Analysis (CA)

Correspondence Analysis is an exploratory statistical technique for assessing the interde-
pendence of categorical variables whose data are presented primarily in the form of a two-way
table of frequencies (or contingency table). Applied in an advanced way, the methodology
can help researchers to “quantify the qualitative data” found in many disciplines. However
we will introduce CA at a very basic level, just picking up on those aspects that can help one
interpret a contingency table.

CA requires only a rectangular data matrix (cross-tabulation) of non-negative counts-but the
number of rows and columns must be 3 or more. The rows and columns do not have to have
predefined meanings but instead must represent the responses to categorical variables. Where
there are just two variables (one each for rows and columns) the analysis is called Simple
Correspondence Analysis. The analysis of cross-tabulations of three or more variables is
called Multiple Correspondence Analysis. This is beyond the scope of this paper.

We shall illustrate some of the basic ideas behind CA using a simple example. Consider
Table 6.1 of frequencies (or contingency table) of smokers in a random sample of 193 per-
sonnel (staff group) from an organisation (data from Correspondence Analysis in Practice by
Greenacre, 1993). A significant association between smoking status and staff groupings can
be observed with the Chi-square test.

dsmo <- tibble(
Groups = c("Junior employees", "Junior managers",

"Secretaries", "Senior employees", "Senior managers"),
None = c(18, 4, 10, 25, 4),
Moderate = c(57, 10, 13, 22, 5),
Heavy = c(13, 4, 2, 4, 2)

)

dsmo |>
adorn_totals(

name = c("ROW TOTAL", "COL TOTAL"),
where = c("row", "col")
)
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Table 6.1: Smoking Status vis-a-vis Staff Groupings

Groups None Moderate Heavy COL TOTAL
Junior employees 18 57 13 88
Junior managers 4 10 4 18
Secretaries 10 13 2 25
Senior employees 25 22 4 51
Senior managers 4 5 2 11
ROW TOTAL 61 107 25 193

Pearson's Chi-squared test

data: column_to_rownames(dsmo, "Groups")
X-squared = 15.672, df = 8, p-value = 0.04733

Suppose we think that there are differences in the smoking status of the various staff groups.
One way to investigate these differences would be to calculate row profiles. That is, we
divide each entry in a particular row by the total for that row, and multiply by 100%. The
set of percentages for each staff group are then called the row profile for that group. The row
profiles are shown in Table 6.2 (ignore for a moment the row labelled “Row.Mass”).

dsmomatrix <- dsmo |>
column_to_rownames("Groups") |>
as.matrix()

rowtotal = rowSums(dsmomatrix)
rowprofile = dsmomatrix/rowtotal

coltotal = colSums(dsmomatrix)
colprofile = dsmomatrix/coltotal

Row.Mass = coltotal/sum(dsmomatrix)
Column.Mass = rowtotal/sum(dsmomatrix)

rowpf <- rbind(rowprofile, Row.Mass) |>
as.data.frame() |>
mutate_if(is.numeric, round, 3)

rowpf
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Table 6.2: Row Profiles

None Moderate Heavy
Junior employees 0.205 0.648 0.148
Junior managers 0.222 0.556 0.222
Secretaries 0.400 0.520 0.080
Senior employees 0.490 0.431 0.078
Senior managers 0.364 0.455 0.182
Row.Mass 0.316 0.554 0.130

Comparing the profiles among the various staff groups we see that they generally have a similar
shape (small % of ‘none’, large % of ‘moderate’ and small % of ‘heavy’) but there are subtle
differences. In particular a much larger percentage of secretaries and senior employees were
in the ‘none’ group, than was the case for junior employees and junior managers, with senior
managers in between. The row ‘mass’ can be interpreted as the marginal (average) profile
for the smoking status and is found by dividing each column total by the overall total. The
profiles can also be plotted as in Figure 6.1 to facilitate comparisons.

rowprofile_long <- rowprofile |>
as.data.frame() |>
rownames_to_column(var = "Staff Group") |>
pivot_longer(cols=None:Heavy,

names_to = "Smoking Status",
values_to = "Row Profiles"

)

rowprofile_long |>
ggplot() +
aes(x = `Staff Group`,

y = `Row Profiles`,
colour = `Smoking Status`,
shape = `Smoking Status`,
group = `Smoking Status`) +

geom_point() +
geom_line() +
coord_flip()
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Figure 6.1: Graphical display of Row Profiles

An alternative analysis could be based on the column percentages (column profiles) by
dividing the entries in each column of the Table 6.3 by each column’s total.

colpf <- cbind(colprofile, Column.Mass) |>
as.data.frame() |>
mutate_if(is.numeric, round, 2)

colpf

Table 6.3: Column Profiles

None Moderate Heavy Column.Mass
Junior employees 0.30 2.28 0.12 0.46
Junior managers 0.04 0.16 0.16 0.09
Secretaries 0.40 0.12 0.03 0.13
Senior employees 0.41 0.88 0.04 0.26
Senior managers 0.04 0.08 0.08 0.06

The ‘mass’ column is then based on the total’ column in Table 6.3, and can be interpreted
as the marginal percentage of employees in each staff group. Looking at the column profiles
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displayed in Table 6.3, for example, we notice that of the 107 moderate smokers in the survey,
53.3% are junior employees compared to 45.6% of the sample as a whole. Moreover this profile
is fairly similar to that of the ‘heavy’ smokers. The profile for non-smokers, however, is quite
different. In particular more than average of the senior employees are non-smokers. Whether
we analyse the data by considering the row profiles or the column profiles, we should arrive
at a similar conclusion. In each case we can compare the row (column) profile to the row
(column) average (mass). As we should come to much the same conclusion either way, this
approach is known as ‘symmetric consideration’ of the rows and columns.

There are further methods available to investigate the dependency in a contingency table which
are beyond the scope of this course. However we will consider one very useful graph called a
Symmetric Plot. The way this graph is created is that techniques from Linear Algebra are
used to define two principal trends within the data. Technically the trends are referred to as
inertia, which is a concept we will not go into. What is needful is to know that the trends are
represented as the axes of the plot. As these axes are devised automatically – based purely on
the numbers rather than the context – it can be that they are not easy to interpret. But often
they are easily interpreted, especially if you apply a little ‘lateral thinking’. So the axes can
give a real insight into the data. And even when the axes themselves are not interpretable,
this still does not prevent us getting some useful information from the plot. Plotted on this
graph are points, corresponding to the row and column categories of the contingency table.
The actual location of the points depends on the axes. The main thing is that we can interpret
points that are ‘near’ as being related in some way, while points that are far apart are in some
sense opposite.

library(MASS, exclude = "select")

dsmomatrix |>
corresp(nf=2) |>
plot(cex=0.75, xlim=c(-0.4, .45))

abline(v=0)
abline(h=0)
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Figure 6.2: Symmetric plot of smoking data

Looking at the example of a symmetric plot in Figure 6.2, we see that Senior Employees
are very close to the None category of smokers, while Junior Managers are very close to the
Heavy category of smokers. This is graphical display of the information in Table 6.2, where
these types of workers had the smallest and biggest proportions in the Heavy smokers column
respectively – and the reverse for the ‘None’ column. The other categories are intermediate
– that is, for example the Secretaries are a lot closer to the Senior Employees in smoking
behaviour than to the Junior Managers and so are plotted that way. The Junior Employees
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most closely resemble the typical profile of a Moderate smoker.

In a symmetric plot, it is also possible to interpret the axes as well. First note that the
horizontal axis is usually by far the most important. The variable representing the
horizontal axis of the Symmetric Plot accounts for the maximum possible variation when
compared to the variable representing the vertical axis. Nevertheless the second axis does
serve to spread the data out. Now to interpret the first Axis (horizontal), we consider the
points at the extreme left and right of the data. As None is far to the right and Heavy and
Moderate far to the left, it is reasonable to interpret this axis as largely a contrast between
Non-smokers and Smokers (in general). Then how far from right to left the worker groups are,
can be interpreted in terms of how far they are from being non-smokers.

To interpret the second Axis (vertical) we note that the workers with the lowest status (Junior
Employees and Secretaries) are at the top, both types of Managers (high job status) are at
the bottom, and Senior Employees are in the middle. Thus interestingly the program has
sorted the workers in terms of Status, even though the sorting was done entirely on the basis
of smoking behaviour! However we should not pay equal attention to this axis as it does not
represent much variation when compared to the horizontal axis.

As a further example, consider Table 6.4. These are frequencies on colours of eyes (rows) and
hair of people (columns) in Caithness, Scotland originally analysed by Fisher [3].

deh <- tibble(
eye = c("blue", "light", "medium", "dark"),
fair = c(326, 688, 343, 98),
red = c(38, 116, 84, 48),
medium = c(241, 584, 909, 403),
dark= c(110, 188, 412, 681),
black = c(3, 4, 26, 85)

) |>
column_to_rownames("eye")

Table 6.4: Frequency of colours of eyes (rows) and hair (columns) in Caithness, Scotland

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4
medium 343 84 909 412 26
dark 98 48 403 681 85

The Chi-square test of association on the above two-way table suggests that there is a signifi-
cant association between the colours of eyes and hair (𝜒2=1240, df = 12, 𝑝-value < 0.000).
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Pearson's Chi-squared test

data: deh
X-squared = 1240, df = 12, p-value < 2.2e-16

Given the significant association between row and column variables, it is useful to look for
further patterns of association using the symmetric plot given in Figure 6.3. We see many
patterns such as black eyes being associated with dark or black hair etc.

deh |> corresp(nf=2) |> plot()
abline(v=0)
abline(h=0)
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Figure 6.3: Symmetric plot of eye and hair colour
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7 Summary

In this chapter, we considered Goodness of Fit Tests and Tests of Association. Two different
Goodness of Fit Tests were considered. Chi-square Goodness of Fit Tests are used to test
whether a set of frequency data complies with a hypothesised distribution. Only one test
of association, the Chi-square Test of Association was considered. For Chi-square tests of
association we perform a test on a table of frequencies, that is counts. The null hypothesis
is that the row categories are independent of the column categories. A Chi-squared statistic
with (𝑟 − 1)(𝑐 − 1) degrees of freedom is calculated. The contribution of a cell to the total
Chi-squared statistic will be large if (𝑂−𝐸) is large; that is the observed count is considerably
different from the expected (fitted) value. We are interested in this difference.

If 𝐸 is small then the effect may be spurious, and so categories are joined together to ensure
that 𝐸 is not too small. As a rule of thumb, 1 was taken as the smallest value of E provided
that no more than 5% of cells have 𝐸 < 5.

Simple correspondence analysis helps us to explore relationships in large two-way contingency
tables when independence is rejected. We use symmetric plots for reduction of the complexity
of the table so that we can understand the nature of relationships between the categorical
variables.
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